Approximation of Nonlinear Parabolic Equations Using a Family of Conformal and Non-conformal Schemes
نویسندگان
چکیده
We consider a family of space discretisations for the approximation of nonlinear parabolic equations, such as the regularised mean curvature flow level set equation, using semi-implicit or fully implicit time schemes. The approximate solution provided by such a scheme is shown to converge thanks to compactness and monotony arguments. Numerical examples show the accuracy of the method.
منابع مشابه
APPROXIMATION OF STOCHASTIC PARABOLIC DIFFERENTIAL EQUATIONS WITH TWO DIFFERENT FINITE DIFFERENCE SCHEMES
We focus on the use of two stable and accurate explicit finite difference schemes in order to approximate the solution of stochastic partial differential equations of It¨o type, in particular, parabolic equations. The main properties of these deterministic difference methods, i.e., convergence, consistency, and stability, are separately developed for the stochastic cases.
متن کاملBoundary Shear Stress in a Trapezoidal Channel
This paper focuses on a hydraulic radius separation approach used to calculate the boundary shear stress in terms of bed and wall shear stress proposed in a trapezoidal channel. The average bed and sidewall shear stress in smooth trapezoidal open channels are derived after using Guo & Julien (2005) early equations taking a part of an investigation to cover both rectangular and trapezoidal chann...
متن کاملRecurrent metrics in the geometry of second order differential equations
Given a pair (semispray $S$, metric $g$) on a tangent bundle, the family of nonlinear connections $N$ such that $g$ is recurrent with respect to $(S, N)$ with a fixed recurrent factor is determined by using the Obata tensors. In particular, we obtain a characterization for a pair $(N, g)$ to be recurrent as well as for the triple $(S, stackrel{c}{N}, g)$ where $stackrel{c}{N}$ is the canonical ...
متن کاملA High Order Finite Dierence Method for Random Parabolic Partial Dierential Equations
In this paper, for the numerical approximation of random partial differential equations (RPDEs) of parabolic type, an explicit higher order finite difference scheme is constructed. In continuation the main properties of deterministic difference schemes, i.e. consistency, stability and convergency are developed for the random cases. It is shown that the proposed random difference scheme has thes...
متن کاملA Composite Finite Difference Scheme for Subsonic Transonic Flows (RESEARCH NOTE).
This paper presents a simple and computationally-efficient algorithm for solving steady two-dimensional subsonic and transonic compressible flow over an airfoil. This work uses an interactive viscous-inviscid solution by incorporating the viscous effects in a thin shear-layer. Boundary-layer approximation reduces the Navier-Stokes equations to a parabolic set of coupled, non-linear partial diff...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010